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A comparison is made between flux-limited finite difference methods and characteristic 
Galerkin methods for approximating hyperbolic conservation laws. At the tirst-order level, the 
characteristic Galerkin scheme using piecewise constants is closely related to the difference 
schemes of Engquist, Osher, and Roe. Adaptive recovery techniques used to improve accuracy 
then have much in common with the flux limiters used with difference methods. These 
reiationships are explored and comparisons made using the linear advection, inviscid Burgers 
and Euler equations. A new, simple formulation is given of the characteristic Galerkin method 
using piecewise constant elements with piecewise linear recovery: it reduces to the Engquist- 
&her algorithm but with a modified flux function &hen the CFE number is no greater than 
one haif. cm 1987 Academic Press. Inc 

1. INTRODUCTION 

In recent years many authors have devised high resolution, total variation 
diminishing (TVD) finite difference schemes in order to obtain sharper profiles to 
represent discontinuities than is possible with first-order schemes, whilst avoiding 
the spurious oscillations which plague the more classical second-order schemes. 
One important class of techniques uses flux limiters [4, 22, 23,26, 27,291 which, as 
with FCT (flux-corrected transport) methods [2, 14, 311, utilise a limited amount 
of anti-diffusive flux to add to a first-order scheme. 

* The work reported here forms part of the research programme of the Oxford/Reading Institute for 
Computational Fluid Dynamics and has been supported by the Science and Engineering Research 
Council Grant GR/D/39512. 

+ This paper is dedicated to the memory of Keith Roberts from whom the tirst author received untold 
inspiration and Iearned the value of combining physical principles with mathematical ingenuity. 
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More recently and in parallel with this work, finite element methods based on the 
characteristic Galerkin formulation have started to be developed for shock model- 
ling [lS, 16, 171. As shown in [15], piecewise constant elements lead to a first- 
order scheme equivalent to the Engquist-Osher scheme [S] but data recovery 
techniques can be used to obtain higher accuracy. 

In this paper we explore this idea using recovery techniques based on piecewise 
linear functions. We show that the recovery can be applied adaptively to ensure 
that monotonicity is preserved and thus has a similar role to that of flux limiters. 
Moreover, we show that one form of the update procedures has much in common 
with the difference schemes of Roe [22,23], while a new simpler formulation again 
reduces to the Engquist-Osher algorithm for CFL numbers up to one half, but now 
with a locally modilied flux function. 

The two approaches are described in their scalar forms in Sections 2 and 3. Then 
in Section 4 we present their extensions to systems of equations by decomposing 
them into characteristic fields. Comparisons of numerical results for one- 
dimensional model problems are made in Section 5. The results are seen to be very 
comparable: sometimes one approach has the edge, sometimes the other. Thus we 
conclude with a brief discussion of their relative merits, particularly in regard to the 
prospects for multi-dimensional problems. 

2. FLUX LIMITED DIFFERENCE SCHEMES 

Consider the scalar conservation law in one dimension with convex flux f(u) 

a,u + i3,f(u) = 0 t>o, XER 

and with initial data 

u(x, 0) = uO(x) 

given. Weak solutions v(x, t) of this equation have the property 

(2.1) 

(2.2) 

i.e., their total variation is non-increasing. 
We approximate the conservation law (2.1) by an explicit conservative finite 

difference scheme on a uniform mesh (Ax, d t), 

u~+‘=u~-n(hZ+,,,-h;_,,,), (2.3) 

where A is the mesh ratio 

A= d t/Ax (2.4) 
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and 1%; + 1,2 E k(u;._ ,, . . . . U; + m ) is a consistent numerical flux function, such that 

h(u, . . . . u) =f(uh (2.5) 

The property of the discrete solution corresponding to the total variation pro-perty 
of the exact solution is 

and has been dubbed “total variation diminishing” (TVD) by Harten ES]. Unlike 
solutions of the conservation law, solutions of the difference scheme (2.3) do not 
necessarily possess the TVD property (2.6), and hence produce spurious 
oscillations, particularly near any discontinuities of the solution. 

In order to eliminate such spurious features of the numerical solution, as well 
as to obtain desirable convergence properties, many authors now seek schemes 
whose solutions do satisfy this criterion (2.6). Harten [S] and others (e.g., 
1127, 12,24, lo]) have shown that a difference scheme written in the form 

where G+,i2, D;f+ ll2 may depend on the Set ($1 and &k+ li2 : = i!k + L - ukq 
produces TVD solutions iff 

(2.8) 

Note that the final inequality imposes a CFL-like condition on the scheme. 
In general first-order accurate schemes are TVD but give poor resolution whilst, 

although giving higher resolution, the classical second-order schemes, such as the 
LaxxWendroff, are not TVD. It is easily shown that constant coefficient schemes of 
second or higher order accuracy cannot be TVD and hence there has been much 
work carried out on adaptive schemes which, by using solution dependent coef- 
ficients, are able to combine high resolution with the TVD property (see, e.g., Boris 
and Book [2], Harten [IX], Roe [23], van Leer [29], to name just a few). 

One of the pioneer methods is the flux corrected transport (FCT) method of 
Boris and Book [2], and more recently of Zalesak [31] and McDonald and 
Ambrosiano [ 141. The technique used is to supplement the numerical flux of a low 
order scheme with the difference in the fluxes of that scheme and a higher order 
scheme but corrected in such a way as to ensure the TVD property. 

We consider here a special subset of FCT, that of flux limiters (Sweby [26] )* 
where a limited anti-diffusive flux is added to a first-order TVD scheme to obtain a 
higher resolution TVD scheme. (Note that the “limiting” performed here can in fact 
be ‘“enhancement” of the anti-diffusive flux if this does not violate the TVD con- 
straints.) It is desirable for this first-order TVD scheme to be entropy satisfying as 
well, thus avoiding non-physical shocks; such a class of schemes is provided by the 
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E-schemes of Osher [20], which have been generalised to the fully discrete case by 
Tadmor [28]. This class of schemes is characterised by their numerical flux satisfy- 
ing 

(G+1 - G)(K + lj2 -f(u)) G 0 Vu between u;, u; + 1. 

Now we define left- and right-moving flux differences 

(2.9) 

PfI+ l/2 )- := C&+,;*-f3 (Af ;+ 1!2 )’ := -Cf;+l-4+1~21, 

where f; : = f (u;), from which the corresponding CFL numbers 

(2.10) 

$+1/z := Wf;:+,,,)‘/W+,,, (2.11) 

are obtained: each takes the sign of its superscript. Equating vi++ 1,2 with C; + 1,2 and 
- v;+ 1,2 with 4 + 1j2 in (2.7), it is easily seen that the scheme (2.3) is TVD if it is an 
E-scheme, so long as it satisfies the CFL condition 

‘k++ l/2 - ‘k + L,‘2 . ~ <l . (2.12) 

In this formulation it should be noted that Ck+ 1.‘2 and D;, ii2 include terms 
corresponding to right and left numerical viscosities for the cell (xk, xk+ i), and 
second-order TVD is achieved by effectively modifying them within the bounds of 
the inequalities (2.8). When using flux limiters to obtain high resolution schemes, 
c;: + l/2 and D;+ li2 are modified by adding a limited anti-diffusive flux to the 
numerical flux function of a first-order scheme of the form (2.3) viz., 

u;+’ =u;-AA ~ {h;,,;, +f&r:)(l - y$+l,2KAf ;+ i/J+ 

-4~(~k,1)(1+vki-1,2)(Af;:+,:2)-}, (2.13) 

where A _ v k := ok-ok-l =: A~+v~-~ and d(y) is the limiter: this is a function of 
the ratios 

+ _ f(l - vk’- ,/dAf ;- 1,‘2)+ 

rk :- +(l-~r;+1,2)(Af;:+1,2)+' 
t(l+~k.+,,~)(df~+~,~j~ 

"- := f(l+~k-~,~)(Af;:_~!~)-’ (2’14) 

After a little manipulation (2.13) can be put in the form (2.7) by setting 

c;+ l/2 = vk= I/2{ 1 + tc1 - v:; 1~2m(~k++ 1)/r/T+ 1- dr,’ )I 1 

&+1/z= -vk+,,2((1+f(l+“k+1,2)C~(~k)l~k-~(~k+,)l). 
(2.15) 

Conditions that d(r) must satisfy in order that (2.13) be TVD can then be readily 
established (see Sweby [26]): assuming that we set d(r) E 0 for r < 0, we need both 
&Y) and c,h(r)/r to lie in the interval [0,2]. Furthermore, since the Lax-Wendroff 
method corresponds to 4(r) = 1 and the Warming and Beam [30] second-order 
upwind scheme to d(r) = r, a d(r) lying between these will lead to a convex average 
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FIG. 1. Feasible regions for flux limiters: examples are q5, = minmod, I& = superbee, &. = van Leer, 
and dr based on Fromm. 

of them and hence normally of second-order accuracy (this is a sufftcient condition; 
the necessary condition for second-order accuracy is simply q5( I+ E) = I+ O(E)). 
These regions are shown on Fig. 1, which also shows some of the flux limiters an 
common use-namely the minmod limiter qS1 and the superbee limiter d2 of Roe 
[23], van Leer’s limiter q5vL [29], and a limiter q5r based on Fromm’s scheme 
116 11. 

We now consider an alternative viewpoint for flux limiter schemes, namely the 
increment and transfer formulation [23], which will be helpful in the comparison 
with characteristic Galerkin schemes. Dropping the superscript n, we denote by 
CL+ 1:2 and Dk+1:2 the coefficients of the first-order scheme employed. This scheme 
can be regarded as an algorithm for each “cell” (x,, xk+ r): 

increment the value of uk b 0: + I,‘2 6Uk + I;? 

and (2.10) 

decrement the vaIue of uk +, by CL + ii2 6uk+ Ij2. 

The flux limiter may then be regarded as introducing a transfer step; that is, for 
each cell (.xk, xk+ 1): 

and (2.17) 

transfer +d(rkm I( 1 - 0: + L,2) 0: + 1j2 6uk + 1,.2 from uk to Uk+l. 

Since CL + 1,2 and DL, riz are usually heavily dependent on the sign of the wave 
speed, hf/&r, the first-order stage amounts to a decision as to which direction to 
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allocate given increments. For example, the Cole-Murman first-order upwind 
scheme [ 191 may be formulated simply as 

increment 
uk 

by -Abfk+1:2 if (2.18) 
Uk+1 

This scheme takes as its highest priority the imposition of a Rankine-Hugoniot- 
type jump condition on any discontinuity, giving the correct shock speed but 
unfortunately also allowing entropy-violating jumps. On the other hand, the 
Engquist-Osher scheme [S] takes entropy satisfaction as its main criterion and, by 
using overturned manifolds, gives physically correct solutions, but at the cost of 
poorer shock resolution. This scheme may be formulated (for convex f(u)) as 

use -A( fk + 1 -f ) to increment uk 
if uf’t”k+ 1) <O 

zck+ I if J”(uk+Ib” 

and ((2.19) 

use --l.(j-fk) to increment 
uk if f’(u,)<O 

uk+l if f’(u,) > 0, 

where f is the sonic value of J i.e., f(Q) such that f’(u) = 0. 
At this first-order level, of course, the Godunov scheme [7] based on the exact 

solution of the Riemann problem gives the best choice: it reduces to the Cole- 
Murman scheme at physical shocks and the Engquist-Osher at expansion waves. 
However, in general this requires detailed knowledge of the function f and is much 
more difficult to extend to systems of equations and to higher order schemes. Thus 
the objective is to model adequately the true evolution of the approximation from 
time level n, using only the minimum information on $ (2.18) uses only fk and 
f ktl, while (2.19) also uses f ;, f ;+ ,, and f: Roe [23] has proposed a modification 
of the Cole-Murman scheme which, assuming convex f, interpolates for J’ to yield 

where 

(2.20) 

li;+ I,2 = Min(tlk, “k + 112 L $+ 1,~ = MaX(“, + 1, “k + 1;2 ), (2.21) 

vii + 1,2 is the usual cell CFL number and vk, vk+ r are (approximations to) Af ‘(uk), 
Af ‘(%+I ). Then these increments are distributed as in (2.19). Note that if instead of 
(2.21) we take \ii+ ri2 = rk and Gf+ ,i2 = I’k+ I then shocks are treated via overturned 
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manifolds as in the Engquist-Osher scheme. Both of these schemes are E-schemes 
and therefore entropy satisfying. 

In the finite element methods of the next section, not only is the assumed form of 
the approximation at each time level made explicit as is usual with finite element 
methods, but also the way in which its evolution is modelled. 

3. EULER CHARACTERISTIC GALERKIN SCHEMES 

3.1. Basic Formulae 

Suppose at time level FZ we approximate the solution of the conservation law (,2.1) 
by an expansion in basis functions {Qk(x)}, 

Lqx) = 1 u$$k(x). (3.1) 
k 

The basic characteristic Galerkin method using Euler timestepping (hence ECG 
method) can be written (see Morton [15, 16, 171) in the following form, where 
( ., . ) denotes the usual L2 inner product over the space variable X, 

(U”+’ -U”,q5,)+At(~, f(lJ*),@;:)=O. (3.2a) 

Here the special test function in the second inner product is given by 

j3.2b) 

and a(u) = Jf/du is the characteristic speed; that is, @; is the average of the basis 
function dk over the distance a characteristic travels in one timestep. Such a scheme 
is clearly conservative, so long as the (4k) spans the unit constant. For linear 
problems it is unconditionally stable: however, it is generally much simpler in form 
if used for a limited range of CFL numbers. 

The derivation and validity of the formula (3.2) is best approached through the 
‘“transport collapse” operator used by Brenier [3]. Suppose at time-level n we have 
an approximation D(X) which, although it may be discontinuous as a function of x7 
we assume has a continuous graph [II, X] in the (x, u)-plane. Then we introduce the 
evolutionary operator i? = I?( At) given by the mapping 

y = x f a(v(x)) At (3.3a j 

(&I)( c’) = u(x). (3.3b) 
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This yields another continuous graph [i%, ~1 which, however, may correspond to 
i&l being a multivalued function of J if the characteristics have overtaken one 
another. In terms of this operator we can write the basic ECG scheme in the form 

= ~“(x)~~(l’)dl,,~=~+a(U”)Ar 5 (3.4) 

where the integral is to be calculated along the graph [EV, ~a] taking account of 
the sign changes in d,v/d-x if the characteristics overtake one another. The two forms 
(3.2) and (3.4) are complementary and both are useful in obtaining the explicit 
algorithms given below. The form (3.2) shows the role of the flux function more 
clearly and facilitates comparisons with the difference schemes of the previous 
section: its identification with (3.4) is achieved by substitution of (3.2bj into (3.2a) 
and integrating by parts. In all such integrations and in the interpretation of (3.2), 
the integrals should be interpreted as being along the graphs in the (x, u)-plane. 

For the present comparison we will take only piecewise constant basis functions, 
that is, on a general mesh dk(-y) 3 1 for xkP ,.‘2 <x < xk+ ,.‘*; we call this the element 
k, consistent with the usual finite element terminology and distinct from the term 
cell used in Section 2 to denote the interval CL x/c+ 113 where 
.‘ck = f(Xk - 1;2 + -‘ck + I;2 ) and Ax, = xk+ l:Z - xk _ ii2. Then (3.2a) can be written 

AxJU;:+‘- t.$)+Ar(S,f(U”j, q>=o. (3.5) 

For CFL numbers less than unity this reduces to the first-order Engquist-Osher 
difference scheme (2.19): each flux difference is broken up to give increments 

-AU;+ 1 -f(41 and -AU-(~) -f;l, (3.6) 

where U corresponds to the sonic point (assumed unique, as in the convex f case) at 
which a(G) = 0; and the first increment is added to the Jx, UL or 4x,+ z U;, , 
according to whether a; + 1 : = a( U; + , ) is negative or positive, with the second dis- 
tributed according to the sign of a;. 

The nodal parameters (LJ;) are interpreted as averages over the kth element so 
that V(x) is regarded as representing as closely as possible the projection of the 
true solution U”(X) on to the space of piecewise constant functions. Thus (3.2) 
corresponds to taking this projection U”(x), tracing its evolution through one 
timestep by following the characteristics (including the possibility of the solution 
curve “overturning”), before projecting again to get U”+‘(X). Assuming that the 
evolution stage is carried out sufficiently accurately (it can be done exactly here 
because the characteristics are straight lines) and in the absence of shocks, the main 
opportunity for obtaining greater accuracy without going to higher order basis 
functions lies in deducing more about the true solution U”(X) from its projection 
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V(X) before the evolution stage. Thus suppose we combine a number of 
neighbouring values U; to recover a function ii”(x) whose projection is V(X): 

(UR-ii”,cpk)=O Vk. (3.7) 

Then we can replace (3.3) by 

A.u,( U;+ ’ - U;)+At(d,f(ti”), 6;)=0, (3.8) 

where 6; is given by (3.2b) with U” replaced by ii”. For example, in [16] it was 
shown that for linear advection the effect of using higher order basis functions can 
be reproduced in this way: thus if ii” is a quadratic spline (3.8) yields the highly 
accurate (3rd-order) scheme obtained directly from (3.2) using continuous linear 
basis functions dk(xj. 

Use of such smooth recovery functions is inappropriate here. On the other hand, 
in [15, 171 shock recovery algorithms have been given in which each element k is 
scanned for the presence of a shock, involving a jump from U; ~ I to U; + 1 ; this is 
then moved with the correct shock speed A,f ;/A,U;, where A, := $(A, + A _ ). 
The result of this procedure can also be expressed in terms of an integral along a 
graph, as in (3.4); it can also be combined with some form of smooth recovery 
between the shocks and we therefore denote this by [ESii”, y]. From the viewpoint 
of implementation, however, we have found it most useful to work from (3.2). Sup- 
pose we have a single shock and let us denote by ( -, . )r and ( ., . )R the integrals 
up to and beyond the shock, which joins recovered states 2; and fik. Then with the 
shock speed 

we can define 

(3.9b) 

and hence obtain as an extension of (3.2), 

This is the form we shall use in this paper. The shock recovery will be combined 
with an adaptive recovery procedure using piecewise linear functions. The method 
and its results will be compared with the flux limiters described in the previous sec- 
tion. For this comparison we shall confine ourselves to a uniform mesh henceforth. 
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3.2. Piecewise Linear Recovery 

Leaving aside the shock recovery for the moment, the piecewise linear recovery is 
based on spreading the discontinuity at (k + +) dx over +Bk+ ,;z Ax either side with 
0<8. L+ 1j2 < 1. Then dropping the superscript rz, (3.7) implies that the intermediate 
recovered levels 27/, must satisfy 

Qe~~~/~iik~,+fl-~ek-~j2-~eh-+1~2)Ulk+$ek+,,2iik+,=Uk. (3.11) 

(On a non-uniform mesh tIk+ 1,2 = 1 corresponds to a linear section from X~ to 
Xkt 1.. 1 

The choice of the parameters tI,+ li2 is somewhat analogous to that of the flux 
limiters d(r) in the previous section. At the limit 8 = 1, and only then, one obtains a 
second-order accurate scheme; for linear advection and with Iv/ <t it reduces to 

u ;+I= [U-~d,,ii+$&~G];l (3.12a) 

= [l -vA,+~(v’-$)6’] ii;. (3.12b) 

Note that this is an implicit scheme, through the “mass matrix” introduced in solv- 
ing (3.11); further it always makes use of just three neighbouring values of z$, the 
set of three depending on the interval in which 11 lies. There is also a valuable 
stability margin so that (3.12), for instance, which is used for JvI < f would, as a 
fixed difference scheme, be stable for v’ d f. However, the scheme is not TVD, nor is 
it monotonicity preserving. 

Thus in the spirit of the last section we shall consider choosing 0 as large as 
possible while preventing the generating of spurious oscillations. However, note 
that we do this only at the recovery stage and rely on the evolution algorithm not 
to introduce any oscillations at that stage. We have found the most useful general 
criterion to be of the form 

and (3.13) 

This ensures no new extrema are created. Unfortunately, because of (3.1 l), 
maximising 0 subject to (3.13) is not a local problem. We have used two basic 
algorithms: 

(A) Starting with C,$‘) = U, V’k, use Jacobi iteration on the differenced form of 
(3.11), 
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with the 6 parameters determined by difference ratios calculated from either two or 
three elements either side of the element boundary: 

ep> 1:: = l/max(L o:+ I:2, a;+ kf2). 

Using just two elements either side, we can set 

(3.14b) 

D:+I,2= +d+iip)/d+ uk+l, G k,L,2=aA+ii~i-1)iA;Uk-1 (3.14~) 

and this will ensure (3.13) is satisfied at each stage of the iteration. Similarly, (3. I3 ) 
is satisfied if three elements are used to replace (3.14cj by 

o;+ 1,2 = &[A + $“-“,/A + U,+,]!3 C sgn rk+?), (3.14dj 

where rli=A+Ukp,, id + U,, and the corresponding expression for ok; I.‘> involving 
T,,- r; numerical experiments show that (3.14d) gives significantly better results. 
Alternatively, the Jacobi iteration may be used only a few times and then (3.11) 
solved with the last set of B’s to maintain the projection property (3.7). We cannot 
then guarantee the property (3.13) but good results have been obtained in practice 
in this way. In particular, with no Jacobi iterations but using just (3.14b) to go 
immediately to (3.11) the a:~, liz of (3.14~) reduces to irk+ r and the oi;i. I:z to 
1;‘(4r,< j and gives a very simple algorithm; moreover, if the choice (3.14b) is overnd- 
den to give 1!$!‘~,~=1 ifeither r,_,<Oor rk+Z < 0, excellent results are obtained. 

(B) The alternative type of algorithm that we have used starts with large 
values of 8 and then reduces them locally to satisfy (3.13 1. Poor convergence is 
experienced if one starts with Sip! ,,z = 1 V’k. We have therefore used values obtained 
from considering the local discrete Green’s function for (3.11) with constanr 6 and 
smooth U,. This gives 

where 

@k, I,2 := 
84+Uk(d+U,+l+d+Uk~Ij 

tA+U~+~+A+U,+A+U,-,)’ 

WJ + Kk + 11.2) 

= (3 + Kk,.1!.2)2i 

The parameter Kk + ,.” is one whose significance has been noted by others engaged 
in shock modelling. Failure of the criterion (3.13 j occurs where the parameter 

T k+l,‘Z := (A+ uk-A+h)/A+ CT, (3.1%) 

is greater than unity for any k: a set of three neighbouring 8 values are ihen 
reduced by setting 
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before recalculating 11 from (3.11). This algorithm converges very quickly and gives 
excellent results. 

3.3. Update Algorithm with Linear Recovery 

We have already noted that without recovery the update algorithm for the ECG 
scheme is identical to the Engquist-Osher difference scheme, the increment form 
with the increments given by (3.6) being the most natural. After recovery with 
piecewise linears it is again natural to break up the contributions to the update, this 
time into those from each interval over which ii varies linearly. First we combine 
(3.7) and (3.8) in the form 

( U”’ ‘, fji) = (3, qbi) -At(a,f(P), 8’:‘). 

Then the first integral on the right can be broken up into 

(3.16) 

(3.17a) 

where we have exploited the linearity to change the integral over x to one over U. 
We treat the last part of (3.16) in a similar way to obtain, from the definition of &; 
and using y =x + a(ii”(x)) At, 

We can combine these formulae to obtain 

(3.17b) 

Here J](X) is defined implicitly through P(X) over the linear section centred at 
xk + 1,2. Therefore we introduce 

A kt 1/2(i) := a(c) + (6 - iik + 1;‘2)/&k + 112 At) (3.19a) 

and 

F,+,,,(u”) := f(c) + +(c - ii,+ ,!2)2/(fik+lp At), (3.19b) 



METHODS FOR SHOCK MODELLING 215 

whereby A, + ,I? = aFk + &3 1? and from which we can substitute into (3.18) 

)’ = -xk + ,.‘2 + A4k + I:‘7 (22) At. (3.20 

Various explicit algorithms can then be derived from (3.18) and (3.20) 
The simplest and most important algorithm for our present purposes comes from 

assuming 

for II between ii; and C; + , ; for then the contribution from this section of the graph 
can only go to update either V; or U;: + r. We denote bv iiifi I;2 for I = 1, 2, ...t ~7 any , 
sonic points of Fk+,,z(G) between ii; and ii;, r. with $1 I:2 := i;,; and 
“ktl 2 .- -w+‘).- G;,, and FFL1;2:= Fk+li2(iijf!1!2. ) Then using A as before ‘to denote the 
mesh ratio At/Ax, we obtain the simple update algorithm to be executed for each li 
to obtain f U;’ I } from { 6;): for I= 0, 1, 2, . . . . m, i 

in the subinterval Q+ 1,2 to up: $. That is, we have an Engquist-Osher algorithm 
of the form (2.19) or (3.6) for the modified flux function. Because a quadratic has 
been added to .f to obtain Fk + ,,,2, this may contain more than one sonic point even 
when f is convex; but in the particular cases occurring in gas dynamics this 
complication never arises. 

In earlier work (see [ 171 j the same scheme was presented differently, without 
introducing the functions of (3.19) and instead using “crossing points” (A$‘+~ 2, 
I= 1, 2, . . . . m )? where J(X) crossed y = xk+ 1j2; that is, solutions of 

z-i- a@(z)) At = xk; ;;2. (3.23 I 

Using these and keeping the integrals in (3.17) over x rather than over Q, one 
obtains a form close to the increment and transfer formulation given in (2.t6) and 
(2.17). Omitting details which are given in [17] and using the notation 
fi’: L;2 : = f(ii”(.Q+ (;‘*)), i$!‘+ 1:2 := La(ii”(xf1, li2)), we have the following algorithm 
for updating { U;t} to { ul;+ r ) when (3.21) holds: 

(i) for i = 0, 1, . . . . m, 

in the sub-interval (.@+ 1,2, xfz :..‘? ); 
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(ii) for I= 1, 2, . . . . m, 

transfer frFQ+ Jijfi ,,*)’ .4x from 
i 

(3.24b) 

according to whether y(x) is increasing or decreasing at xt\ 1,2 ; 

(iii) if v”k > iok + ,I2 and again (independently) if ck+ 1I2 < -46, + IIz, 

transfer $6, + Ilz A + ii; from l.7; to u;,I. (3.24~) 

Suppose that f(u) is convex so that a’(u)>O; then since y(x) is increasing if 
1 + a’(L) rti, + 1I2 At > 0, there cannot be more than one crossing point unless the 
gradient of ic is negative and quite large. Thus if shocks are recovered separately 
there will usually be at most one crossing point: for small 8 this will mean normally 
none with III = 0, and for large 8, normally just one and m = 1. 

3.4. Shock Recovery and Update Algorithm 

It remains to describe the shock, or more generally jump, recovery algorithm. We 
have found the most reliable criteria for determining whether a jump should be 
recognised as occurring in element k, and retained there in the recovered function 
27, are as follows: 

a(U;I-pl)-a(U;+,)ZO (3.25a) 

and 

rk > O, Irk-l1 +l, irk+,1 *l1, (3.25b) 

where rk is the ratio of successive differences 

rk := (Q- u;-,)/(U;:+,- q). (3.26) 

The tolerances in (3.25b) have so far been selected by numerical experience. 
Combination of jump recovery with the piecewise linear recovery has been 

carried out as described in [ 151 and as formally defined in (3.10). For completeness 
we merely summarise the update process corresponding to a jump in element k. 
After solving the tridiagonal systems of the form (3.11) either side of element k, one 
has a jump from ii;,, to ii;,, at a fractional position q (see Fig. 2) given by 

(l-yI)G+, +qii;:-,= u;. (3.27) 

We introduce the CFL number corresponding to the jump 

Fk : = hi, f (U”;)/A& (3.28) 

and allocate the contribution 

-~cIw+,)-fm-,)I (3.29) 
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FIG. 2. Sketch of piecewise constant 1: and corresponding 12 recovered with a combination of shocks 
and piecewise Linears. 

to the three elements k - 1, k and k + 1 in the following proportions: 

k-l k k+l 

In summary, the main components of the ECG algorithm used in the numerica! 
comparisons of the next section are as follows: 

(i) identify any shocks by means of (3.25), (3.24): 

(ii) carry out the linear recovery between the shocks using (3.13) or (3.15); 

(iii) update the solution using (3.19), (3.22) and the shock update (3.27)- 
(3.30). 

Coded in a straightforward manner the algorithm takes roughly twice as long as the 
corresponding flux-limiter programs on all the scalar problems. However, with little 
extra complication the restriction (3.21) can be set aside and the more general 
algorithm runs most effectively with CFL numbers larger than unity. 

4. SYSTEMS 0~ EO~JATIONS 

We now consider extension of the scalar algorithms of Sections 2 and 3 to 
systems of equations, in particular, to the Euler equations of compressible gas 
dynamics. 

For the Godunov and Engquist-Osher difference schemes of Section 2 there exist 
direct counterparts for systems of equations. However, the former is based on the 
solution of a one-dimensional Riemann problem at each element boundary and the 
second as extended by Osher and Solomon [2 11 involves the solution of similar 
problems, using overturned manifolds or folded characteristic fields rather than 
shocks in the case of compressive waves. Either approach makes for a rather com- 
plicated algorithm even for a first-order scheme. 
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A simpler approach is that due to Roe [22]. This uses a Jacobian A = df/aw 
averaged over each cell (k, k + 1) to linearise the differential system, so decompos- 
ing the vector of flux differences Sf, + i,.2 into characteristic fields proportional to the 
right eigenvectors of A. Then the Cole-Murman scheme (2.18), or flux-limited 
second-order variants of the form (2.17) can be applied to each field independently. 

For any first-order scheme, when a limited anti-diffusive flux is added to improve 
the resolution there is one main difference from the scalar case described in 
Section 2: for each characteristic field the left- and right-moving flux differences 
(As;+ 1/2)+ of (2.10) are now vectors. Thus the ratios r$ of (2.14) used to determine 
the flux limiters have to be redefined by selecting an appropriate vector z and 
replacing (df;+li*)* in (2.14) by 

(4.1) 

In all cases we have chosen the density as the most sensitive indicator for the flux 
limiters and therefore for the usual definitions of the characteristic fields (see below) 
taken zT = (1, 0,O). 

As pointed out at the end of Section 2, a disadvantage of Roe’s original decom- 
position of flux differences is that not enough information in given to treat trans- 
onic expansion waves correctly. An approximate interpolated sonic point as given 
in (2.20) is sufficient to overcome this when the Roe difference scheme is applied to 
the Euler equations because one has only to use the appropriate characteristic 
speed for each CFL number in (2.20) along with the bwk+ [,‘? for the corresponding 
characteristic field to replace 6u, + ,!z. However, in studying various ways of 
extending the ECG schemes of Section 3 to systems of equations, we have not so 
far seen an effective way of using the Roe decomposition except for treating jump 
recovery. 

Thus consider the piecewise constant ECG scheme with piecewise linear recovery 
which led to the algorithm given by (3.22). Instead of decomposing the flux or state 
vector differences (i.e., flux difference splitting j, we decompose into characteristic 
fields in each element (i.e., flux vector splitting). For the Euler equations 

it($l)ii.(~(~PG;;)=o (4.2) 

we decompose w = (p, pu, e)T into the three characteristic vectors 

corresponding to the characteristic speeds U- CI, 14, u + a, respectively; here 
a2 = 1lpIp and H= (e +p)/p, the enthalpy. We denote the vectors (4.3) by w(l), w(‘), 
wc3’ and the speeds by iz (I’, A(‘), A(‘). Note that 1 (m) is given by the ratio of the 
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second to the first component of w cm) in each case and that the corresponding fluxes 
are f’“’ = ~(rniW(rn) because the homogeneity of the equations implies that f = A%v. 
(Note, this splitting of the flux vector is one of those analysed by Steger and 
Warming [Z].) 

We have used the density, that is, the first component of each w(“‘), to select the 
(6,+ ,:,) for the linear recovery using one of the algorithms of (3.14) or (3.15). 
Then from (3.11) we obtain the three characteristic fields Gj$ at each nodal point 
xk. To implement the update process of (3.22) we construct the modified fluxes 4”“’ 
and characteristic speeds /Itrn) by generalising ( 3.19) for each characteristic fieid; to 
simplify the notation we suppress the superscript (m) and obtain 

0. 6 
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0. 4 
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0.2 
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0. 0 

-0.1 

FIG. 3. Linear advection by difference schemes: U = 1st order, no limiter; C: = minmod !imiter: 
4 = superbee; i = van Leer. 
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Here all the components of iir vary linearly between Gk and G,, L with tik + l,z the 
mid-point; and we exploit the points noted above regarding determination of L(g) 
and f(G). As a result, the calculation of the sonic points ti at which Ak+,,,2 = 0 
reduces to the solution of a quadratic, the correct root being obvious. 

Jumps (that is, shocks and contact discontinuities) are recognised by using the 
criteria of (3.25b) applied to the density, but with the criterion (3.25a) applied to all 
the characteristic fields. Having detected a jump in the solution, jump recovery is 
implemented using Roe’s decomposition [22] locally and then performing the 
scalar algorithm (3.30) on each field of the decomposition. That is, if a jump is 
detected in element li, we set the surrounding B’s, 8, _ ,,2 and Bk + r12, to zero and 
decompose the jump iik _, , iik+ r using Roe’s decomposition. The position of the 
jump for each field is found using this and another decomposition on ii,, ii,, , via 
(3.27). The distribution (3.30) is then applied to the flux differences given by the 
decomposition, field by held. 
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FIG. 4. Linear advection by ECG schemes: 0 =no recovery; 13 = simple recovery (3.14a, b, c)); 
A = fixed .9 = 1 recovery; i> = iterated recovery (3.15). 
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5. NUMERICAL RESULTS 

We present results here of computations with the above methods for the iinear 
advection equation, the inviscid Burgers equation and the Euler equations. The 
capabilities of the flux-limited difference schemes are well known so we use these 
mainly as yardsticks by which to judge the ECG methods. 

Linear advection is one of the most severe tests of accuracy for a general method 
since, as with contact discontinuities, the solution operator is completely neutral--- 
giving neither steepening nor smoothing. As is now common practice we use a large 
number of timesteps, 612, with compact data on a periodic domain [0, 11. The first 
tests are with the initial pulse sin* 77(4x-- 1) on (a, +) advected with unit speed; 
results are given in Figs. 3 and 4, with dx = 0.02 and At = 0.01. In Fig. 3 are shown 
the results for the various limiters given in Section 2 and represented on Fig. 1; 
clearly the superbee limiter gives the greatest improvement over the first-order 
upwind scheme and none of course give any undershoot. In Fig. 4 are shown the 
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FIG. 5. As Fig. 3, with square pulse data. 
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corresponding results for the piecewise constant ECG scheme with various linear 
recovery schemes; the non-adaptive 8 = 1 recovery gives a better peak value but, as 
expected, gives undershoots at the leading and trailing edges. Simple recovery based 
on (3.14a, b, and c) without iteration gives a result very similar in form to the flux- 
limited scheme but not as good as superbee; but the more acccurate recovery with 
(3.15) gives a peak value appreciably higher than superbee and with negligible 
flattening. Very comparable results can be obtained if (3.14d) is used instead of 
(3.14c), showing that careful treatment of the situation when the differences change 
sign is all important. 

Similar tests on the advection of a square pulse which is initially on ($, i) give the 
results of Fig. 5 for three of the flux-limiters; and in Fig. 6 are shown the results for 
the ECG schemes. Here we see that the superbee flux-limiter performs considerably 
better than the ECG schemes using linear recovery. However, we would not nor- 
mally expect to use recovery with piecewise linears on such data: and, as is shown, 
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FIG. 6. As Fig. 4, with square pulse data: V = jump recovery. 
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application of the jump recovery algorithm is successful in recovering both jumps at 
each timestep so the exact solution is obtained. 

The next tests are with the inviscid Burgers equation, starting with the same 
square pulse except that it is shifted on to a base at - f to check the effect of the 
sonic points. Again results are given for ilx = 0.02 and At = 0.01, this time after 20 
and 140 timesteps. In Fig. 7 we show those obtained with the first-order Engquist- 
C&her scheme and with the superbee limiter; the latter considerably sharpens up the 
shock and removes the dog-leg obtained with the E.O. scheme at the rarefaction 
sonic point; other limiters give similar but not quite such good results. The ECG 
schemes give the results shown in Fig. 8; the non-adaptive linear recovery is not 
shown as it gives oscillations going up to 0.6 at the later time. The iterated linear 
recovery of (3.1 I) gives results very similar to but not quite as good as superbee; 
the jump recovery improves on this, capturing the shock with at most one inter- 
mediate point. 
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FIG. 7. Inwcid Burgers’ equation by difference schemes: 2 = Engquist-@her, no limiter; 0 = wit:1 
superbee limiter. 
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FIG. 8. Inviscid Burgers’ equation by ECG schemes: 0 = no recovery; 0 = iterated recovery (3.15); 
0 = iterated plus jump recovery. 

Finally we have used Sod’s standard shock-tube problem to test the algorithm for 
the Euler equations. The standard parameters are: pL = 1.0, pr = 1.0, uL =O.O, 
pR = 0.1, pR = 0.125, and uR = 0.0. 

We have used Ax = 0.02 and At = 0.003 and display the results after 48 steps at 
t = 0.144 in Figs. 9-13. As can be seen, from Figs. 9 and 11, the first-order methods 
both give poor resolution of the discontinuities; but the flux vector splitting, on 
which the ECG schemes have been based, has greater difficulty in picking up the 
foot of the expansion fan (see Fig. 11) than the Roe decomposition used in Fig. 9. 
This difference continues into the higher order schemes: the results of Fig. 10 
produced with Roe’s decomposition and the superbee limiter are the best of those 
shown; while the use of iterative linear recovery (3.15) in the ECG scheme to give 
the results of Fig. 12 shows a marked improvement over those of Fig. 11, they are 
still not as good as Fig. 10. We note here that simple linear recovery produces very 
similar results, the full advantage of the more complex recovery not being so 
noticeable after only a small number of timesteps as taken here. 
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FIG, 9. Shock tube problem using Roe decomposition with lst-order scheme and no limiter. 
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FIG. 13. As Fig. 10 with linear and jump recovery. 

The addition of jump recovery to the linear recovery (Fig. 13) sharpens the shock 
slightly, giving comparable definition to that produced by superbee, but has no 
effect on the contact discontinuity. Numerical tests starting with data at ’ a t3me 
greater than zero indicate that this due to the difficulty in detecting the contact 
when it resides in the same or adjacent element as the shock, as is the case initially. 
The jump recovery algorithm that we have described above can be used only when 
jumps are at least two elements apart. As the shock-tube problem starts with the 
shock and contact discontinuity coincident, much of the error is generated in the 
early stages. We have considered using jump recovery algorithms which will deal 
with closer jumps. For example, in the scalar case one can recognise and recover 
jumps in elements (k- 1) and (k + 2) ( near neighbour recovery) if 1~~ ~~ 2j < I, 
lYlctZI $1 with ?-k-l,rk and rkfI >O. The resolution of jumps in neighbouring 
elements can also be achieved in the case of systems of equations. However, we 
have not pursued these sophistications further so as not to complicate the task of 
extending the algorithms to two dimensions. 
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6. CONCLUSIONS 

Our objective in this paper has been to take a highly developed class of difference 
schemes for an important and difficult set of problems and to see whether recent 
developments of finite element methods can produce similar high quality results. In 
doing so we have maintained a purist approach to finite element methods; that is, 
we have avoided the borrowing of finite difference techniques which would 
invalidate the comparison. Of course, we fully appreciate that ultimately the most 
useful methods will probably use ideas from both viewpoints. 

A finite difference approach to approximating a differential problem uses Taylor 
series in some form (or several) to approximate the differential or integral form of 
the operators involved in the problem. There are few general rules and a great 
variety of schemes result which are applicable to a wide range of problems. A finite 
element approach is both more disciplined and more limited. The emphasis is on a 
given functional form for the approximate solution which has to be used con- 
sistently throughout the formulation; then some sort of global principle is needed to 
obtain a defining set of algebraic equations, typically a variational principle, which 
may limit the applicability of the method. 

Modelling hyperbolic conservation laws provides an interesting area for com- 
parison of the two approaches; but one has to compare like with like. One could 
compare conventional difference schemes like Lax-Wendroff or similar higher order 
schemes with straightforward weak formulations of finite element methods such as 
Galerkin, Petrov-Galerkin, or Taylor-Galerkin. This has been done to some extent 
in [ 16, 171, and references quoted therein, where these generalised Galerkin 
methods were related both to each other and to the characteristic Galerkin methods 
considered here. 

The schemes compared in the present paper have a common ancestry in the lirst- 
order method of Godunov [7] which can be regarded as either a finite difference or 
a finite element method. Those of Section 2 have been developed using higher order 
difference schemes in an adaptive manner and approximate Riemann solvers to 
retain the best features of the Godunov method while achieving higher accuracy 
economically. The finite element schemes of Section 3 have used the same piecewise 
constant approximation as [7] but exploited its projection property to obtain 
higher accuracy when justified by smoothness, again adaptively; the formulation is 
based on an approximate evolution operator so as to give a clearly defined method 
which can also be simply implemented. The result of our comparison has been to 
show that the different approaches working at comparable orders of approximation 
not only yield similar levels of accuracy but also algorithms which have similar 
structures. This has been achieved despite staying strictly within the more formal 
finite element framework, in contrast to developments of the Petrov-Galerkin 
methods given in [ 171 which have been carried out, e.g., in [9], by applying the 
flux-limiter difference technique in an ad hoc fashion. 

For the one-dimensional problems considered here, this can be regarded as a 
merely academic point. However, some advantages that the finite element approach 
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has as it moves from this common base of accuracy are already apparent. We see 
from (3.8) that it takes a non-uniform mesh in its stride. Also arbitrary timesteps 
can be taken on such a mesh with no loss of stability; one merely has to solve (3.20) 
for ?‘=xk+P+I,!2 with p # 0 rather than finding the sonic points which correspond 
to p =O. As pointed out by Leveque [ 131, if the evolution operator one is using 
does not misrepresent too badly the wave interactions that occur in a longer 
timestep, one can gain accuracy by increasing At because of the fewer projections 
that are involved. 

However, the final payoff has to be sought in multi-dimensional problems and, 
indeed, the interest in non-uniform meshes and arbitrary CFL numbers also stems 
from this. Extending the TVD concept and the flux-limited difference schemes 
without making use of fractional step methods is notoriously difficult. On the other 
hand, the transport collapse operator of [3] is dimensionally independent and one 
can show that on a square mesh with piecewise contant elements the Engqujst- 
&her scheme is augmented by cross-differenced terms arising from interactions at 
the corners. Also the closely related Lagrange-Galerkin methods are widely applied 
in two- and three-dimensional problems very successful1 using piecewise linear or 
multi-linear elements. The recovery methods described in the present paper are still 
under development for higher dimensions but preliminary results are encouraging. 
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